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Abstract. Condition monitoring and machine status classification are of great practical 

importance in the manufacturing industry as it provides online updates on the state of the 

machine, avoiding loss of production and minimizing the probability of generating catastrophic 

damage to the machine. In this paper, the classification of conditions is based on the processing 

of information using wavelets based on the results of the monitoring and the data collected during 

such an action, measuring the characteristics of the lubricating oil over some time sufficient to 

produce a time series of results. In this paper, the classification system is tested and validated 

using observation sequences based on the maximum wavelet distribution obtained from the 

collected signals, monitoring the state of the lubricating oil, to define and diagnose singularities 

in time series. 

1.  Introduction 

In recent years, the rapid development of industrial automation has prompted the need for smarter and 

more reliable processing systems. 

To minimize the losses caused by production interruption and the high cost due to machine and plant 

faults, it is necessary to monitor the status of the on-line machine using an effective condition monitoring 

system to provide timely information for faulty decision making, of any type, and diagnosing these 

defects promptly. In general, monitoring conditions involves observing machine condition using 

periodic dynamic response measurements, such as vibration signals obtained from multiple transducers, 

or measurable features for lubricating oils. Vibration measurements are taken from the machine usually 

contain lots of useful information but also noise components that should be removed from the signal 

before the information is used for machine condition classification and maintenance planning. 

Measurements made for oils refer to detections of the measurable components of the matrix of physical, 

chemical, electrical, properties. All these measurements, relating to the properties of the oils, are based 

on the use of performance sensors, [1].  

2.  Detecting and diagnosing the malfunction 

When a process error occurs, it should be detected as soon as possible. The fault and malfunction 

detection system must indicate that something is wrong in the process. After detection, fault diagnosis 

is performed, the fault is isolated, and the cause of the malfunction is detected. Typically, the techniques 

used to detect and diagnose defects are divided into two broad categories: estimation methods and 

pattern recognition methods [2]. 



 

 

 

 

 

 

2.1 Methods of estimation 

Estimation methods require mathematical models of the processes, not very complicated, to represent 

the real process satisfactorily, and solving the mathematical model is not excessively time-consuming. 

Detecting malfunctions based on state variables also involves the risk of a significant number of non-

measurable variables that must be estimated. For directly estimation, a dynamic process model is 

linearized around an operating point. Estimation can be done using different methods depending on how 

stochastic the model is, then the residue evaluation, i.e., the differences between estimated and actual 

measured variables. This approach, based on mathematical models, requires relatively accurate 

knowledge of the linearized model parameters, with estimation errors generating model errors and 

validation errors. The detection of defects based on parameter estimation requires the existence of a 

known mathematical relationship, to be able to estimate their behavior by the physical parameters of the 

process. This requires specific knowledge of measurable process parameters as well as their variability. 

Because not all process parameters are directly measurable, their changes are calculated using the 

estimated process parameter. This is why the relationship between model parameters and process 

coefficients must be unique and, preferably, known precisely, a very rarely fulfilled condition. 

 

2.2 Methods of pattern recognition. 

These methods do not require the mathematical models of the process, the creation of neural network 

architecture, an algorithm for fault detection and diagnosis. The idea is that the process is classified 

according to measured data. From spatial representation, this classification is, in fact, a transposition of 

the measurement space into the decision-making area. The development of an algorithm for pattern 

recognition and pattern classification can usually be focused on three steps: measurement collection, 

extraction of features, and classification. As an example of the development of these algorithms, in the 

case of a real process, in a first step, the measured data is collected, then a characteristic vector is 

calculated, the redundant data is removed by the extraction, respectively the situations in which the data 

are missing (missing data), creating, at this extraction stage, the prerequisites for generating decision 

areas. In the last step, the characteristic vector is classified into one or more classes. These classes 

depend on the purpose of the algorithm created. If the target algorithm refers to error detection and 

diagnosis, the classes could be, for example, regular operation, number of A-type faults, number of B-

type faults, etc. Any neural network or pattern recognition pattern or pattern classification algorithm 

performs the classification and recognition of patterns based on a complex overlapping operation, as is 

evident, of the measurement space in the decision making space. A human being has an amazing ability 

to recognize patterns, and often uses a very complex logic in pattern recognition and classification, but 

can not often define laws and rules for doing these operations. When a classification is done with neural 

networks, the entire mapping from the measurement space to the decision space is done at the same 

time, and the classification scheme is learned through examples extracted from the classified data 

collection. Thus, it is evident that methods of model recognition and classification do not require 

mathematical, analytical models but need representative data for training.  

An outlier can be defined as a "data point" in a series of times that is very important difference from 

the rest of the data points. Outliers are important observations that affect data analysis and should, 

therefore, be treated with caution. There are different types of exceptional values that can occur in a 

series of times: a) -additive outlier (AO) is a measurement error at time T, 1≤ T ≤N, due to factors 

outside the system (e.g., o machine malfunction or a human error in data recording could be called 

outlier additions, an outlier additive does not affect the trend of a process); b) - Another type of outlier 

is innovative outlier (IO), which is caused by a certain change in a process/system. The main difference 

between an AO and an IO is that it indicates the beginning of a new trend in the process, which may 

eventually return to normal. Sometimes, changes in process/ system characteristics may involve a 

permanent change of process/system status (a change from stationary to non-stationary). The two main 

aspects associated with outliers are the detection of outliers, and the decision to be taken after the outliers 

have been detected. Detecting outliers involves identifying the occurrence time T, which may not be 

known, as well as recognizing the outlier type. 



 

 

 

 

 

 

Figure 1 illustrates the dispersion of some anomalies in a simple set of data represented in a two-

dimensional plot. Two distinct regions are distinguished, in which the data are grouped, each 

representing the normal behavior of a system or systems, while scattered, discordant data sufficiently 

distanced by the two typical regions are singularities, or anomalies of this data set, [4]. It is essential 

that these anomalies are not treated as "noises". Noises are generally defined as obstacles in the work of 

analyzing phenomena and processes, and should be treated as components of the mathematical model 

of the process, [5]. Considering a simple linear model that expresses the relationship between the time 

series of inputs, Xt, and the time series of outputs, Yt, in the form: 
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respectively, represented as the ratio of mathematical operators, and 

which denotes the dynamic relation between outputs and inputs, where B is a backward shift operator 

(a set of time 𝒛𝒕  observable with the components: :  𝒛𝟏, 𝒛𝟐, ⋯ , 𝒛𝑵 then 𝑩𝒛𝒕 = 𝒛𝒕−𝟏, 𝑩𝒎𝒛𝒕 = 𝒛𝒕−𝒎), 

while 𝑵𝒕 represents the filtered noise component superimposed over the input signal, 𝒂𝒕 (converts) the 

𝒛𝒕  component as follows: 
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where 𝝁 is a parameter that generally expresses the "level" of 𝒛𝒕, and 𝒂𝒕, is a sequence consisting of 

randomly weighted components, after the operator 
2

1 2
(B) 1 B B       , called the filter 

transfer function (it is different, as a definition and mathematical model of anomalies, singularities, etc.: 

t t
N (B)a  , so that analysis of a process or a system behavior requires the determination of both the 

transfer function (B) , and the filter transfer function, (B) , [5], [6], [7]. An iterative numerical 

procedure is presented in [7], starting from the analysis of two classes of outliers generated by dynamic 

models of exceptional interventions at unknown times: innovational outlier (IO) and additive outlier 

AO) Starting from a stochastic process model, 𝒙𝒕, following an autoregressive-integrated-moving 

average (ARIMA) model (possibly with the characteristics: p- a positive integer indicating the degree 

of the nonseasonal autoregressive polynomial, d-a nonnegative integer indicating the degree of 

nonseasonal integration in the linear time series, q-a positive integer indicating the degree of the known 

nonseasonal moving average polynomial), [8], [9], [10]. 

In [6], it is analyzed the case where the moment T of the occurrence and the unfolding of the 

exceptional intervention in the model of the process, and finally the appearance of the outliers, is known, 

 Figure 1- Normal regions and anomalies data 



 

 

 

 

 

 

and in [7] there is presented a survey including a practical procedure for the development of the analysis 

a stochastic process in which the time of intervention is unknown, it can be estimated statistically, or 

using other techniques, [10]. 

3.  Experimental setup 

The experiment was conducted in several phases, being part of a Research Program, supported by private 

companies in Romania and Italy. A first test phase of an experimental model that took place at Mecoil 

(Italy), in the company's lab, on a demo system with simulated parameters. The elements that were tested 

(physicochemical parameters) were evaluated in the first stage, on a single level. Data processing and 

computational work have yielded positive results in gaining the necessary data points to advance in the 

actual monitoring of a physical system. The overcoming of this early phase has enabled the decision to 

install the hydraulic system containing sensors and transducers sets, designed and physically installed 

in the industrial installations (pilot systems) at EMSIL Techtrans SA Oradea-Romania, as well as in four 

other locations in Italy, to the partners Mecoil [11], [12], [13]. 

4.  Results and discussions 

Status monitoring and diagnosis, respectively, predicting the estimation of some output parameters 

for a technical system can be framed in the "extrapolation" chapter as an immediate mathematical 

operation [14], [15]. Of course, the time series for which mathematical operations of this kind can be 

applied are subject to errors due to the statistical nature of these mathematical classes. The example 

prepares an LSTM network for two case studies: one to predict oil moisture and the other to predict the 

oil temperature using neural network analysis [13] based on the retrieved records by the sensors located 

in the hydraulic system designed to simulate the operation of an oiling plant in an automatic plant, figure 

2. Prediction is understood as an estimate of the values of a time function based on values of a time 

series, values that can be, or can not be, affected by random errors. For example, a prediction problem 

could be expressed as follows: Given a series of time, S (t), which consists of a set of values, and a 

random set of disturbing signals assimilated to a set of noise, Z (t), it is proposed to estimate a future 

value, a prediction, therefore, P (t + ), where  is a positive constant, the prediction is also a continuous 

function of time. This case study shows how to predict data from time series using long short term 

memory (LSTM) network, [9]. To predict the values of the next steps of a sequence, a sequence 

regression LSTM network will be used, where the responses are the training sequences with values 

changed over a time step, figure 3. This means that at each step of the input sequence, the LSTM network 

learns to predict the output value at the next time step. To forecast the multiples of time values in the 

future, the predictedAndUpdateState function in Matlab was used to predict the time steps one by one, 

and to update the LSTM network state for each prediction, figures 4 and 5. This experiment uses the 

data set collected within the National Program PN II project, ERA MANUNET: NR 13081221 / 

13.08.2013. The example prepares an LSTM network for two case studies: one to predict oil moisture 

and the other to predict the oil temperature using neural network analysis [13] based on the retrieved 

records by the sensors located in the hydraulic system designed to simulate the operation of an oiling 

plant in an automatic plant. The data set is partitioned as follows: 90% of the data volume will be used 

for network training, and the remaining 10% of the collected data set is used to test the network. The 

working procedure states that the response values of the system are the network training data sequence. 

An LSTM regression network was used for which it was specified to have an architecture of 200 hidden 

units, and train for 50 epochs. This will prevent the gradients from exploding the gradient threshold. The 

initial value of learning rate was set to 0.005 and provided to drop the learning rate after 25 epochs to 

be multiplied by a factor of 0.2. The network is initialized when the predictive training data is made. 

Next should be the first prediction using the last time step of the training response. The network function 

will be useful when prediction and outputs of the network are updated sequentially using predicted data. 

The phase of training will be monitored permanently by the calculated root-mean-square error (RMSE), 

which is the measure of errors induced by the network, figure 6. 



 

 

 

 

 

 

  
Figure 2 Separating the data into identification 

and a validation segment(time’s scale in 

seconds, instead of hours) 

Figure 3 Using the 10 steps ahead predictor for 

the identification data and the independent 

validation data(time’s scale in seconds, instead 

of hours) 
 

  

Figure4 The forecasting procedure uses the yi, 

i=1÷n,  measured data recorded,  to compute the 

model state at time step n 

Figure 5 The forecasting results after 200 steps, 

shows not significant variance 

  

 
Figure 6 The plot of  the training time series with the forecasted values, 

 in terms of RMSE (root-mean-square-error) and LOSSE parameter 



 

 

 

 

 

 

Acknowledgment  
This work is supported by Machine Intelligence for Diagnosis Automation (MIDA), Research 

Program, National Program PN II, ERA MANUNET: NR 13081221/13.08.2013 

References 

[1] Sorsa T., Koivo H. N., and Koivisto H. 1991 Neural Networks in Process Fault Diagnosis, IEEE 

Transactions On Systems, Man, And Cybernetics, Vol. 21, no. 4, DOI: 10.1109/21.108299 

[2] Teng H. S., Chen K. and Lu S. C-Y 1990 Adaptive Real-time Anomaly Detection Using 

Inductively Generated Sequential Patterns Conference Proceedings on Research in Security 

and Privacy IEEE Xplore DOI: 10.1109/RISP.1990.63857 

[3] Chandola V., Banerjee A., and Kumar V. 2009 Anomaly detection: A survey. ACM Comput. 

Surv., 58 pages. http://doi.acm.org/10.1145/1541880.1541882 

[4] Hodge V. J. and Austin J. 2004 A Survey of Outlier Detection Methodologies, Artificial 

Intelligence Review 22: pp. 85–126, Kluwer Academic Publishers, doi: 10.1023/B: 

AIRE.0000045502.10941.a9 

[5] Box G. E. P., Jenkins G. M., Reinsel G. C., Ljung G. M. 2015 Time Series Analysis: Forecasting 

and Control, Fifth Edition, John Wiley & Sons. 

[6] Box G. E. P. & Tiao  G. C. 1975 Intervention Analysis with Applications to Economic and 

Environmental Problems, Journal of the American Statistical Association, 70:349, pp. 70-

79, DOI: 10.1080/01621459.1975.10480264. 

[7] Chang I., Tiao G. C., and Chen C. 1998 Estimation of Time Series Parameters in the Presence of 

Outliers, Technometrics30, no. 2 193-204. doi:10.2307/1270165. 

[8] Abraham B., Box G. E. P. 1979 Bayesian Analysis of Some Outlier Problems in Time Series 

Biometrika 66(2):229-236, DOI: 10.1093/biomet/66.2.229 

[9] Statistics and Machine Learning Toolbox™ User's Guide, 

https://www.mathworks.com/help/releases/R2018a/pdf_doc/stats/stats.pdf, Accessed in 

February 2019. 

[10] Rousseeuw P. J., Leroy A. M. 1987 Robust Regression and Outlier Detection, John Wiley & 

Sons. 

[11] Adriani G., Campatelli M., Paoli M., 2013 Monitoil® - Online sensors for efficient and cost-

saving oil conditions’ monitoring, Mecoil Diagnosi Meccaniche s.r.l., Florence, Italy, 

http://www.mecoil.net/wp-content/uploads/2013/04/20120914-Articolo-

colonne_Monitoil_eng.pdf  

[12] Grebenişan G., Salem N., and Bogdan S. 2017 The lubricants parameters monitoring and data 

collecting, MATEC Web of Conferences, Volume 126, 2017,  

https://doi.org/10.1051/matecconf/201818403008. 

[13] Grebenişan G., Salem N., and Bogdan S. 2018 An approach of classification and parameters 

estimation using the neural network, for lubricant degradation diagnosis, MATEC Web of 

Conferences, Volume 184  https://doi.org/10.1051/matecconf/201818403009. 

[14] Wiener N. 1949 Extrapolation, Interpolation, and Smoothing Of Stationary Time Series With 

Engineering Applications The M.I.I. Press Massachusetts Institute Of Technology Cambridge, 

Massachusetts  

[15] Zadeh L. A. and Ragazzini J. R. 1950 An Extension of Wiener's Theory of Prediction IEEE 

Xplore, Journal of Applied Physics 21(7) pp. 645 – 655, DOI:10.1063/1.1699725 

http://doi.acm.org/10.1145/1541880.1541882
https://doi.org/10.1080/01621459.1975.10480264
https://www.mathworks.com/help/releases/R2018a/pdf_doc/stats/stats.pdf
http://www.mecoil.net/wp-content/uploads/2013/04/20120914-Articolo-colonne_Monitoil_eng.pdf
http://www.mecoil.net/wp-content/uploads/2013/04/20120914-Articolo-colonne_Monitoil_eng.pdf
https://doi.org/10.1051/matecconf/201818403008
https://doi.org/10.1051/matecconf/201818403009

